Stereoselective C9 Arylation and Vinylation of Cinchona Alkaloids

Przemysław J. Boratyński,[†] llona Turowska-Tyrk,[‡] and Jacek Skarżewski^{*,†}

Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, 50-370 Wrocław, Poland, and Institute of Physical and Theoretical Chemistry, Faculty of Chemistry, Wrocław University of Technology, 50-370 Wrocław, Poland

jacek.skarzewski@pwr.wroc.pl

Received November 2, 2007

ABSTRACT

A simple and efficient method for the highly stereoselective C-9 arylation and vinylation of Cinchona alkaloids was developed. Both 9S- and 9R-chloroquinine with PhMgBr yielded 9S-phenylquinine (X-ray structure). The reactions with various aryl and vinyl Grignard reagents resulted in the series of 9S-aryl and vinyl alkaloid derivatives. The stereochemical outcome was rationalized by coordination of the magnesium atom to the quinuclidine nitrogen, thus directing the nucleophilic attack at the C-9 stereogenic center.

In the last two decades, *Cinchona* alkaloids (Figure 1) have gained much interest because of their successful applications

Figure 1. Major *Cinchona* alkaloids.

in asymmetric synthesis.¹ For their prominent role as chiral bases, ligands, phase-transfer catalysts, and surface modifiers, they were even considered as belonging to a *privileged* *catalyst* class.2 The most often used selective synthetic modifications of *Cinchona* alkaloids were based on the replacement of C-9 hydroxy group by other functionalities, including those with nitrogen, 3 halogen, 4 and chalcogen 5 heteroatoms.

ORGANIC LETTERS

2008 Vol. 10, No. 3 ³⁸⁵-**³⁸⁸**

However, the stereochemistry of some of these transformations was not so obvious. The stereochemical outcome of the reaction of thionyl chloride with quinine was not a retention as believed,⁶ but rather inversion of configuration, as it was proved by X-ray crystallography.7 Another example is the acidic hydrolysis of methanesulfonyl esters derived from alkaloids of native and inversed (*epi*) configuration at

[†] Department of Organic Chemistry.

[‡] Institute of Physical and Theoretical Chemistry.

⁽¹⁾ For reviews, see: (a) Kacprzak, K.; Gawronski, J. *Synthesis* **2001**, 961. (b) Tian, S. K.; Chen, Y. G.; Hang, J. F.; Tang, L.; McDaid, P.; Deng, L. *Acc. Chem. Res.* **2004**, *37*, 621. (c) Hoffmann, H. M. R.; Frackenpohl, J. *Eur. J. Org. Chem.* **2004**, 4293. (d) Palomo, C.; Oiarbide, M.; Laso, A. *Eur*. *J. Org. Chem.* **2007**, 2561.

⁽²⁾ Yoon, T. P.; Jacobsen, E. N. *Science* **2003**, *299*, 1691.

^{(3) (}a) Brunner, H.; Buegler, J.; Numer, B. *Tetrahedron: Asymmetry* **1995**, *6*, 1699. (b) Vakulya, B.; Varga, S.; Csa´mpai, A.; Soo´s, T. *Org. Lett.* **2005**, *7*, 1967. (c) Chen, W.; Du, W.; Duan, Y.-Z.; Wu, Y.; Yang, S.-Y.; Chen, Y.-C. *Angew. Chem., Int. Ed*. **2007**, *46*, 7667.

^{(4) (}a) Königs, W. *Chem. Ber.* **1880**, 13, 285. (b) Pouwels, H.; Veldstra, H. *Rec. Tra*V*. Chem.* **¹⁹⁵⁵**, *⁷⁴*, 795. (c) Braje, W. M.; Wartchow, R.;

Hoffmann, H. M. R. *Angew. Chem., Int. Ed*. **1999**, *38*, 2539. (5) (a) Zielińska-Błajet, M.; Kucharska, M.; Skarżewski, J. *Synthesis*
06 1176 (b) Zielińska-Błajet M.: Siedlecka R.: Skarżewski J. **2006**, 1176. (b) Zielińska-Błajet, M.; Siedlecka, R.; Skarżewski, J.
Tetrahedron: Asymmetry 2007 18, 131 *Tetrahedron: Asymmetry* **2007**, *18*, 131.

⁽⁶⁾ Dijkstra, G. D. H.; Kellog, R. M.; Wynberg, H. *J. Org. Chem.* **1990**, *55*, 6121.

⁽⁷⁾ Mazhar-ul-Haque; Ahmed, J.; Horne, W.; Miana, G. A.; Al-Hazimi, H. M. G.; Amin, H. B. *J. Cryst. Spectr. Res.* **1986**, *16*, 169.

the C-9 stereogenic center. Both substrates gave a product of the same *epi*-configuration only. The authors suggested that a hydrogen-bound water molecule was one of the possible causes of such a course.8

To the best of our knowledge, there is only a single, nearly 60-year-old report on the effective building of the new $C-C$ bond by the replacement of the C-9 hydroxy group. 9 A coupling reaction between 9-chloroquinine and phenylmagnesium bromide was described by Ochiai et al. However, the authors made no statement on the stereochemistry at position 9 of either the substrate or the product of the reaction.

In the present paper, we report an unexpected stereochemical course of this reaction and its use for the efficient synthesis of a series of new 9-aryl and 9-vinyl derivatives of *Cinchona* alkaloids.

The alkaloids and their C-9 epimers⁸ were transformed to the corresponding chloro derivatives with inversion of configuration by treatment with thionyl chloride.^{4b} Thus, we obtained both epimers of chloroquinine and cloroquinidine: 9*R*-Cl-QN (**6**), 9*S*-Cl-QN (**5**), 9*R*-Cl-QD (**8**), 9*S*-Cl-QD (**9**), as well as 9*S*-Cl-CD and 9*S*-Cl-CN. Additionally, 9*S*-Br-QN was obtained through the known procedure of Apel reaction.^{4c}

9*S*-Chloroquinine (**5**) was reacted with the Grignard reagent obtained from bromobenzene and magnesium as described before.9 The product was isolated by chromatography (65% yield) or, as reported,⁹ by crystallization of the thiocyanate salt. A single crystal of this salt was submitted to X-ray analysis (Figure 2), and the structure of 9*S*-Ph-QN (**7**) was proved unambiguously.

Figure 2. X-ray structure of 9*S*-Ph-QN (**7**) thiocyanate salt.

Accordingly, the configuration at the substitution center was retained. Interestingly, when a different isomer, 9*R*-Cl-QN (**6**), was used in the same reaction, the isolated product (70%) was identical to the previous one; i.e., in this case, 9*S*-Ph-QN (**7**) was obtained with the inversion of configuration (Scheme 1). The product of different configuration, 9*R*-Ph-QN, was neither isolated nor observed in the spectra.

The same procedure was applied for 9-chloro derivatives of quinidine. Here again the reaction of either 9*R*-Cl-QD (**8**) and 9*S*-Cl-QD (**9**) with phenylmagnesium bromide yielded one and the same product, 9*R*-Ph-QD (**10**) (Scheme 1). Its relative configuration was confirmed by $2D¹H NMR$ experiment (NOESY) (Figure 3).

Figure 3. Selected NOE correlations for $9S-C₂H₃-QN$ (18) and 9*R*-Ph-QD (**10**).

Thus, when the configurations at the C-9 and C-8 stereogenic centers of chloro derivatives were the same (*like*-

⁽⁸⁾ Braje, W. M.; Holzgrefe, J.; Wartchow, R.; Hoffmann, H. M. R. *Angew. Chem., Int. Ed.* **2000**, *39*, 2085.

⁽⁹⁾ Ochiai, E.; Tsunashima, K.; Kobayashi, Y. *J. Pharm. Soc. Jpn*. **1949**, *69*, 10; *Chem. Abstr.* **1950**, *44*, 3508D.

isomers) the reaction proceeded with the retention of configuration. On the other hand, the substrates with different configurations at C-9 and C-8 (*unlike*-isomers) reacted with inversion. Generally better yields were observed for chloroderivatives of *unlike*-configuration. The additional yield improvement (up to 88%) was achieved when a 2-fold excess of arylmagnesium compound was used.

It seems that binding of magnesium species by the quinuclidine nitrogen is essential to achieve such unexpected stereoselectivity (Scheme 2). A similar effect has already

been postulated in order to explain the observed diastereoselectivities of DIBALH reduction of quinidinone¹⁰ as well as the addition of alkyl group to quinine's quinoline.¹¹ In our case, in the most stable conformation of *like*-isomers (9*S*-Cl-QN and 9*R*-Cl-QD) the chlorine atom is located very closely to the quinuclidine-bound magnesium atom. The reaction that follows requires the participation of the twometal center and proceeds according to S_N i mechanism leading to retention of configuration. In the case of *unlike*isomers (9*R*-Cl-QN and 9*S*-Cl-QD), the chlorine atom is preferably oriented antiperiplanar to the quinuclidine nitrogen. Here, similar binding of magnesium structure is followed by the S_N2 -like attack and usual inversion of configuration. This explanation is valid for both quinine and quinidine, since apart from the location and orientation of a vinyl group they can be regarded as enantiomers.

Otherwise, a common intermediate would, in the case of *Cinchona* alkaloids, require an extremely strained aziridinium ion, which is unlikely.^{4c} Moreover, it would be responsible for a limited diastereoselectivity only and high content of the elimination and ring-expansion products. None of these products were formed in more than trace amounts. Also, contrary to the reported stereoselectivity of nucleophilic substitution by organomagnesium compounds attributed to anchimeric assistance, 12 in our case no difference was found between the reactions of 9*S*-Cl-QN and 9*S*-Br-QN with

phenylmagnesium bromide. Additionally, when the reaction of 9*S*-Cl-QN with phenylmagnesium bromide was quenched before completion, the recovered chloro derivative was identical to the substrate used; therefore, a rapid isomerization between **5** and **6** can be ruled out under these conditions.

Attempted reactions with phenyllithium or lithium diphenylcuprate instead of the Grignard reagent gave 4% 9*S*-Ph-QN or complete substrate recovery, respectively. Cinchonine (**4**) and cinchonidine (**3**) were transformed to the corresponding 9-phenyl derivatives **¹²** and **¹¹** in 23-39% yield. Because of the higher yield observed in the series of the 6′-methoxy-bearing compounds **7** and **10** vs those without this substituent **11** and **12**, we suppose that the additional complexation of one of the magnesium atoms may facilitate the substitution. Such an effect has already been observed for reactions involving Grignard reagents.¹³ Moreover, an inspection of the corresponding molecular model does not exclude a similar interaction in our case.

Several other aryl derivatives were prepared in fair to good yields by reaction of 9*S*-Cl-QN with various aryl Grignard reagents. Both 2-naphthylmagnesium bromide as well as hindered 1-naphthylmagnesium bromide reacted easily, producing **13** and **14**, respectively (Figure 4).

Figure 4. *Cinchona* alkaloid derivatives.

An attempted substitution of 9-chloroquinine with ethylmagnesium bromide gave a complex mixture, and we could not obtain the desired product. However, when a THF solution of either 9*S*-Cl-QN or 9*R*-Cl-QN was treated with vinylmagnesium bromide, 9*S*-vinylquinine (**18**) was formed as the only isomer. The reaction was complete within 1 h at room temperature. The NOESY experiments for **18** revealed a conformation very similar to that found in the crystal structure of **7** thiocyanate. Hydrogen H-8 shows no cross- (10) Gutzwiller, J.; Uskovic´, M. R. *Hel*V*. Chim. Acta* **¹⁹⁷³**, *⁵⁶*, 1494.

⁽¹¹⁾ Hintermann, L.; Schmitz, M.; Englert, U. *Angew. Chem., Int. Ed.* **2007**, *46*, 5164.

⁽¹²⁾ Converso, A.; Saaidi, P. I.; Sharpless, K. B.; Finn, M. G. *J. Org. Chem*. **2004**, *69*, 7336.

⁽¹³⁾ Le Bail, M.; Pe´rard, J.; Aitken, F. J.; Husson, H. P. *Tetrahedron Lett.* **1999**, *40*, 5309.

peak with hydrogen H-9, suggesting their antiperiplanar orientation. Strong correlations of H-9 with quinoline's H-5′ and H-7b were observed. Three hydrogens, H-7a, H-8, and H-3′, correlate with each other. This averaged conformation cannot be justified by 9*R*-vinylquinine, but it fits to the 9*S*-epimer (Figure 3).

When less than 1.2 equiv of vinylmagnesium bromide was added, nearly 50% of substrate was recovered, while the use of more than 1.5 equiv led to a pronounced nucleophilic substitution at the quinoline $2'$ -carbon atom^{11,14} (Scheme 3).

We did not observe such byproducts with arylmagnesium halides, unless they were used in more than 2-fold excess.

With the intention of examining transformation of the obtained 9-arylalkaloids into the prospective organocatalysts,

(14) Mead, J. F.; Rapport, M. M.; Koepfli, J. B. *J. Am. Chem. Soc.* **1946**, *68*, 2704.

we prepared the products bearing free phenolic hydroxy groups as a hydrogen bond donor.15 The methoxymethyl ether of p -iodophenol¹⁶ was converted to the corresponding Grignard reagent and subsequently coupled with 9*S*-Cl-QN. The product was deprotected with 95% trifluoroacetic acid giving **16**. The phenolic group can also be uncovered by cleavage of the 6′-methyl ether inherited from the quinine structure. Sodium ethylthiolate in DMF^{15b} was found to provide the most satisfactory results, giving **15** from **13** in 75% yield. In order to obtain chiral building blocks suitable for further selective transformations, compound **20** with a single vinyl group only was obtained from the corresponding dihydro derivative (**17**).

In conclusion, 9-chloro-substituted derivatives of *Cinchona* alkaloids were arylated and vinylated in a highly stereoselective manner. The outcome depended on the relative configurations at C-8 and C-9 centers. The reaction with aryland vinylmagnesium halides gave a series of the respective 9-aryl and 9-vinyl compounds with the retention for *like*and inversion for *unlike*-C8,C9-configurations. The products are amenable for further conversion to the prospective catalysts, and these transformations are underway in our laboratory.

Supporting Information Available: Experimental procedures and full spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL7026625

^{(15) (}a) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. *J. Am. Chem. Soc.* **1999**, *121*, 10219. (b) Li, H.; Wang, B.; Deng, L. *J. Am. Chem. Soc.* **2006**, *128*, 732. (c) Marcelli, T.; van Marseveen, J. H.; Hiemstra, H. *Angew. Chem., Int. Ed.* **2006**, *62*, 11402. (d) Mandal, T.; Samanta, S.; Zhao, C.-G. *Org. Lett.* **2007**, *9*, 943.

⁽¹⁶⁾ Takatori, K.; Nisihara, M.; Nishiyama, Y.; Kajiwara, M. *Tetrahedron* **1998**, *54*, 15861.